Highest vectors of representations (total 18) ; the vectors are over the primal subalgebra. | −h6+h5−h3+h1 | −g21+g13 | −g18+g14 | g6+g3 | −g5+g1 | g31+g29 | g30 | −g20+2g19+g17 | −g24+g19+g17 | g2 | −g11+g7 | g32 | g33 | g25 | g22 | g36 | g34 | g27 |
weight | 0 | ω1 | ω1 | ω2 | ω2 | 2ω1 | 2ω1 | ω1+ω2 | ω1+ω2 | 2ω2 | 2ω2 | 2ω1+ω2 | 2ω1+ω2 | ω1+2ω2 | ω1+2ω2 | 3ω1+ω2 | 2ω1+2ω2 | ω1+3ω2 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | 0 | ω1−6ψ | ω1+6ψ | ω2−6ψ | ω2+6ψ | 2ω1 | 2ω1 | ω1+ω2 | ω1+ω2 | 2ω2 | 2ω2 | 2ω1+ω2−6ψ | 2ω1+ω2+6ψ | ω1+2ω2−6ψ | ω1+2ω2+6ψ | 3ω1+ω2 | 2ω1+2ω2 | ω1+3ω2 |
Isotypical components + highest weight | V0 → (0, 0, 0) | Vω1−6ψ → (1, 0, -6) | Vω1+6ψ → (1, 0, 6) | Vω2−6ψ → (0, 1, -6) | Vω2+6ψ → (0, 1, 6) | V2ω1 → (2, 0, 0) | Vω1+ω2 → (1, 1, 0) | V2ω2 → (0, 2, 0) | V2ω1+ω2−6ψ → (2, 1, -6) | V2ω1+ω2+6ψ → (2, 1, 6) | Vω1+2ω2−6ψ → (1, 2, -6) | Vω1+2ω2+6ψ → (1, 2, 6) | V3ω1+ω2 → (3, 1, 0) | V2ω1+2ω2 → (2, 2, 0) | Vω1+3ω2 → (1, 3, 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | W11 | W12 | W13 | W14 | W15 | W16 | W17 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
|
|
|
| Semisimple subalgebra component.
|
|
| Semisimple subalgebra component.
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | ω1 −ω1 | ω1 −ω1 | ω2 −ω2 | ω2 −ω2 | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | ω1+ω2 −ω1+ω2 ω1−ω2 −ω1−ω2 | 2ω2 0 −2ω2 | 2ω2 0 −2ω2 | 2ω1+ω2 ω2 2ω1−ω2 −2ω1+ω2 −ω2 −2ω1−ω2 | 2ω1+ω2 ω2 2ω1−ω2 −2ω1+ω2 −ω2 −2ω1−ω2 | ω1+2ω2 −ω1+2ω2 ω1 −ω1 ω1−2ω2 −ω1−2ω2 | ω1+2ω2 −ω1+2ω2 ω1 −ω1 ω1−2ω2 −ω1−2ω2 | 3ω1+ω2 ω1+ω2 3ω1−ω2 −ω1+ω2 ω1−ω2 −3ω1+ω2 −ω1−ω2 −3ω1−ω2 | 2ω1+2ω2 2ω2 2ω1 −2ω1+2ω2 0 2ω1−2ω2 −2ω1 −2ω2 −2ω1−2ω2 | ω1+3ω2 −ω1+3ω2 ω1+ω2 −ω1+ω2 ω1−ω2 −ω1−ω2 ω1−3ω2 −ω1−3ω2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | 0 | ω1−6ψ −ω1−6ψ | ω1+6ψ −ω1+6ψ | ω2−6ψ −ω2−6ψ | ω2+6ψ −ω2+6ψ | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | ω1+ω2 −ω1+ω2 ω1−ω2 −ω1−ω2 | 2ω2 0 −2ω2 | 2ω2 0 −2ω2 | 2ω1+ω2−6ψ ω2−6ψ 2ω1−ω2−6ψ −2ω1+ω2−6ψ −ω2−6ψ −2ω1−ω2−6ψ | 2ω1+ω2+6ψ ω2+6ψ 2ω1−ω2+6ψ −2ω1+ω2+6ψ −ω2+6ψ −2ω1−ω2+6ψ | ω1+2ω2−6ψ −ω1+2ω2−6ψ ω1−6ψ −ω1−6ψ ω1−2ω2−6ψ −ω1−2ω2−6ψ | ω1+2ω2+6ψ −ω1+2ω2+6ψ ω1+6ψ −ω1+6ψ ω1−2ω2+6ψ −ω1−2ω2+6ψ | 3ω1+ω2 ω1+ω2 3ω1−ω2 −ω1+ω2 ω1−ω2 −3ω1+ω2 −ω1−ω2 −3ω1−ω2 | 2ω1+2ω2 2ω2 2ω1 −2ω1+2ω2 0 2ω1−2ω2 −2ω1 −2ω2 −2ω1−2ω2 | ω1+3ω2 −ω1+3ω2 ω1+ω2 −ω1+ω2 ω1−ω2 −ω1−ω2 ω1−3ω2 −ω1−3ω2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M0 | Mω1−6ψ⊕M−ω1−6ψ | Mω1+6ψ⊕M−ω1+6ψ | Mω2−6ψ⊕M−ω2−6ψ | Mω2+6ψ⊕M−ω2+6ψ | M2ω1⊕M0⊕M−2ω1 | M2ω1⊕M0⊕M−2ω1 | Mω1+ω2⊕M−ω1+ω2⊕Mω1−ω2⊕M−ω1−ω2 | M2ω2⊕M0⊕M−2ω2 | M2ω2⊕M0⊕M−2ω2 | M2ω1+ω2−6ψ⊕Mω2−6ψ⊕M2ω1−ω2−6ψ⊕M−2ω1+ω2−6ψ⊕M−ω2−6ψ⊕M−2ω1−ω2−6ψ | M2ω1+ω2+6ψ⊕Mω2+6ψ⊕M2ω1−ω2+6ψ⊕M−2ω1+ω2+6ψ⊕M−ω2+6ψ⊕M−2ω1−ω2+6ψ | Mω1+2ω2−6ψ⊕M−ω1+2ω2−6ψ⊕Mω1−6ψ⊕M−ω1−6ψ⊕Mω1−2ω2−6ψ⊕M−ω1−2ω2−6ψ | Mω1+2ω2+6ψ⊕M−ω1+2ω2+6ψ⊕Mω1+6ψ⊕M−ω1+6ψ⊕Mω1−2ω2+6ψ⊕M−ω1−2ω2+6ψ | M3ω1+ω2⊕Mω1+ω2⊕M3ω1−ω2⊕M−ω1+ω2⊕Mω1−ω2⊕M−3ω1+ω2⊕M−ω1−ω2⊕M−3ω1−ω2 | M2ω1+2ω2⊕M2ω2⊕M2ω1⊕M−2ω1+2ω2⊕M0⊕M2ω1−2ω2⊕M−2ω1⊕M−2ω2⊕M−2ω1−2ω2 | Mω1+3ω2⊕M−ω1+3ω2⊕Mω1+ω2⊕M−ω1+ω2⊕Mω1−ω2⊕M−ω1−ω2⊕Mω1−3ω2⊕M−ω1−3ω2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | M0 | Mω1−6ψ⊕M−ω1−6ψ | Mω1+6ψ⊕M−ω1+6ψ | Mω2−6ψ⊕M−ω2−6ψ | Mω2+6ψ⊕M−ω2+6ψ | M2ω1⊕M0⊕M−2ω1 | M2ω1⊕M0⊕M−2ω1 | 2Mω1+ω2⊕2M−ω1+ω2⊕2Mω1−ω2⊕2M−ω1−ω2 | M2ω2⊕M0⊕M−2ω2 | M2ω2⊕M0⊕M−2ω2 | M2ω1+ω2−6ψ⊕Mω2−6ψ⊕M2ω1−ω2−6ψ⊕M−2ω1+ω2−6ψ⊕M−ω2−6ψ⊕M−2ω1−ω2−6ψ | M2ω1+ω2+6ψ⊕Mω2+6ψ⊕M2ω1−ω2+6ψ⊕M−2ω1+ω2+6ψ⊕M−ω2+6ψ⊕M−2ω1−ω2+6ψ | Mω1+2ω2−6ψ⊕M−ω1+2ω2−6ψ⊕Mω1−6ψ⊕M−ω1−6ψ⊕Mω1−2ω2−6ψ⊕M−ω1−2ω2−6ψ | Mω1+2ω2+6ψ⊕M−ω1+2ω2+6ψ⊕Mω1+6ψ⊕M−ω1+6ψ⊕Mω1−2ω2+6ψ⊕M−ω1−2ω2+6ψ | M3ω1+ω2⊕Mω1+ω2⊕M3ω1−ω2⊕M−ω1+ω2⊕Mω1−ω2⊕M−3ω1+ω2⊕M−ω1−ω2⊕M−3ω1−ω2 | M2ω1+2ω2⊕M2ω2⊕M2ω1⊕M−2ω1+2ω2⊕M0⊕M2ω1−2ω2⊕M−2ω1⊕M−2ω2⊕M−2ω1−2ω2 | Mω1+3ω2⊕M−ω1+3ω2⊕Mω1+ω2⊕M−ω1+ω2⊕Mω1−ω2⊕M−ω1−ω2⊕Mω1−3ω2⊕M−ω1−3ω2 |
2 & | 0\\ |
0 & | 2\\ |