Processing math: 100%
Subalgebra 2A31E16
26 out of 119
Computations done by the calculator project.

Subalgebra type: 2A31 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A31 .
Centralizer: T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: E16
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, 0, 1, -1)

Elements Cartan subalgebra scaled to act by two by components: A31: (2, 3, 4, 6, 4, 2): 6, A31: (1, 1, 1, 0, 1, 1): 6
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: g29+g30+g31, g2+g7g11
Positive simple generators: g31+g30+g29, g11+g7+g2
Cartan symmetric matrix: (2/3002/3)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (6006)
Decomposition of ambient Lie algebra: Vω1+3ω2V2ω1+2ω2V3ω1+ω22Vω1+2ω22V2ω1+ω22V2ω22Vω1+ω22V2ω12Vω22Vω1V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω1+2ω2+6ψV2ω1+ω2+6ψVω2+6ψVω1+6ψVω1+3ω2V2ω1+2ω2V3ω1+ω22V2ω22Vω1+ω22V2ω1V0Vω1+2ω26ψV2ω1+ω26ψVω26ψVω16ψ
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 18) ; the vectors are over the primal subalgebra.h6+h5h3+h1g21+g13g18+g14g6+g3g5+g1g31+g29g30g20+2g19+g17g24+g19+g17g2g11+g7g32g33g25g22g36g34g27
weight0ω1ω1ω2ω22ω12ω1ω1+ω2ω1+ω22ω22ω22ω1+ω22ω1+ω2ω1+2ω2ω1+2ω23ω1+ω22ω1+2ω2ω1+3ω2
weights rel. to Cartan of (centralizer+semisimple s.a.). 0ω16ψω1+6ψω26ψω2+6ψ2ω12ω1ω1+ω2ω1+ω22ω22ω22ω1+ω26ψ2ω1+ω2+6ψω1+2ω26ψω1+2ω2+6ψ3ω1+ω22ω1+2ω2ω1+3ω2
Isotypic module decomposition over primal subalgebra (total 17 isotypic components).
Isotypical components + highest weightV0 → (0, 0, 0)Vω16ψ → (1, 0, -6)Vω1+6ψ → (1, 0, 6)Vω26ψ → (0, 1, -6)Vω2+6ψ → (0, 1, 6)V2ω1 → (2, 0, 0)Vω1+ω2 → (1, 1, 0)V2ω2 → (0, 2, 0)V2ω1+ω26ψ → (2, 1, -6)V2ω1+ω2+6ψ → (2, 1, 6)Vω1+2ω26ψ → (1, 2, -6)Vω1+2ω2+6ψ → (1, 2, 6)V3ω1+ω2 → (3, 1, 0)V2ω1+2ω2 → (2, 2, 0)Vω1+3ω2 → (1, 3, 0)
Module label W1W2W3W4W5W6W7W8W9W10W11W12W13W14W15W16W17
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Cartan of centralizer component.
h6+h5h3+h1
g21+g13
g14g18
g18+g14
g13+g21
g6+g3
g1+g5
g5+g1
g3+g6
Semisimple subalgebra component.
g31g30g29
2h6+4h5+6h4+4h3+3h2+2h1
2g29+2g30+2g31
g31+g29
h63h54h43h32h2h1
2g292g31
g20+2g19+g17
g12+2g15g16
g16+2g15+g12
g172g19+g20
g24+g19+g17
g8+g12+g15
g16+g15+g8
g19+g20g24
Semisimple subalgebra component.
g11g7g2
h6+h5+h3+h2+h1
2g2+2g72g11
g2
h2
2g2
g32
g6g3
g28
2g26
g1+g5
2g33
g33
g5g1
g26
2g28
g3+g6
2g32
g25
g10
g21+g13
g14g18
2g9
2g22
g22
g9
g18+g14
g13+g21
2g10
2g25
g36
g20+g19g17
g35
2g122g152g16
g16+g15g12
6g35
2g17+2g19+2g20
6g36
g34
g11+g7
g31+g29
2g23
h6+h5h3h1
2g23
2g29+2g31
2g72g11
4g34
g27
g4
g24+g20+g17
g8+g12+g16
2g16+2g12+2g8
2g172g202g24
6g4
6g27
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above0ω1
ω1
ω1
ω1
ω2
ω2
ω2
ω2
2ω1
0
2ω1
2ω1
0
2ω1
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
2ω2
0
2ω2
2ω2
0
2ω2
2ω1+ω2
ω2
2ω1ω2
2ω1+ω2
ω2
2ω1ω2
2ω1+ω2
ω2
2ω1ω2
2ω1+ω2
ω2
2ω1ω2
ω1+2ω2
ω1+2ω2
ω1
ω1
ω12ω2
ω12ω2
ω1+2ω2
ω1+2ω2
ω1
ω1
ω12ω2
ω12ω2
3ω1+ω2
ω1+ω2
3ω1ω2
ω1+ω2
ω1ω2
3ω1+ω2
ω1ω2
3ω1ω2
2ω1+2ω2
2ω2
2ω1
2ω1+2ω2
0
2ω12ω2
2ω1
2ω2
2ω12ω2
ω1+3ω2
ω1+3ω2
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
ω13ω2
ω13ω2
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer0ω16ψ
ω16ψ
ω1+6ψ
ω1+6ψ
ω26ψ
ω26ψ
ω2+6ψ
ω2+6ψ
2ω1
0
2ω1
2ω1
0
2ω1
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
2ω2
0
2ω2
2ω2
0
2ω2
2ω1+ω26ψ
ω26ψ
2ω1ω26ψ
2ω1+ω26ψ
ω26ψ
2ω1ω26ψ
2ω1+ω2+6ψ
ω2+6ψ
2ω1ω2+6ψ
2ω1+ω2+6ψ
ω2+6ψ
2ω1ω2+6ψ
ω1+2ω26ψ
ω1+2ω26ψ
ω16ψ
ω16ψ
ω12ω26ψ
ω12ω26ψ
ω1+2ω2+6ψ
ω1+2ω2+6ψ
ω1+6ψ
ω1+6ψ
ω12ω2+6ψ
ω12ω2+6ψ
3ω1+ω2
ω1+ω2
3ω1ω2
ω1+ω2
ω1ω2
3ω1+ω2
ω1ω2
3ω1ω2
2ω1+2ω2
2ω2
2ω1
2ω1+2ω2
0
2ω12ω2
2ω1
2ω2
2ω12ω2
ω1+3ω2
ω1+3ω2
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
ω13ω2
ω13ω2
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M0Mω16ψMω16ψMω1+6ψMω1+6ψMω26ψMω26ψMω2+6ψMω2+6ψM2ω1M0M2ω1M2ω1M0M2ω1Mω1+ω2Mω1+ω2Mω1ω2Mω1ω2M2ω2M0M2ω2M2ω2M0M2ω2M2ω1+ω26ψMω26ψM2ω1ω26ψM2ω1+ω26ψMω26ψM2ω1ω26ψM2ω1+ω2+6ψMω2+6ψM2ω1ω2+6ψM2ω1+ω2+6ψMω2+6ψM2ω1ω2+6ψMω1+2ω26ψMω1+2ω26ψMω16ψMω16ψMω12ω26ψMω12ω26ψMω1+2ω2+6ψMω1+2ω2+6ψMω1+6ψMω1+6ψMω12ω2+6ψMω12ω2+6ψM3ω1+ω2Mω1+ω2M3ω1ω2Mω1+ω2Mω1ω2M3ω1+ω2Mω1ω2M3ω1ω2M2ω1+2ω2M2ω2M2ω1M2ω1+2ω2M0M2ω12ω2M2ω1M2ω2M2ω12ω2Mω1+3ω2Mω1+3ω2Mω1+ω2Mω1+ω2Mω1ω2Mω1ω2Mω13ω2Mω13ω2
Isotypic characterM0Mω16ψMω16ψMω1+6ψMω1+6ψMω26ψMω26ψMω2+6ψMω2+6ψM2ω1M0M2ω1M2ω1M0M2ω12Mω1+ω22Mω1+ω22Mω1ω22Mω1ω2M2ω2M0M2ω2M2ω2M0M2ω2M2ω1+ω26ψMω26ψM2ω1ω26ψM2ω1+ω26ψMω26ψM2ω1ω26ψM2ω1+ω2+6ψMω2+6ψM2ω1ω2+6ψM2ω1+ω2+6ψMω2+6ψM2ω1ω2+6ψMω1+2ω26ψMω1+2ω26ψMω16ψMω16ψMω12ω26ψMω12ω26ψMω1+2ω2+6ψMω1+2ω2+6ψMω1+6ψMω1+6ψMω12ω2+6ψMω12ω2+6ψM3ω1+ω2Mω1+ω2M3ω1ω2Mω1+ω2Mω1ω2M3ω1+ω2Mω1ω2M3ω1ω2M2ω1+2ω2M2ω2M2ω1M2ω1+2ω2M0M2ω12ω2M2ω1M2ω2M2ω12ω2Mω1+3ω2Mω1+3ω2Mω1+ω2Mω1+ω2Mω1ω2Mω1ω2Mω13ω2Mω13ω2

Semisimple subalgebra: W_{6}+W_{9}
Centralizer extension: W_{1}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00)
(0.00, 1.00, 0.00)
0: (1.00, 0.00, 0.00): (350.00, 300.00)
1: (0.00, 1.00, 0.00): (200.00, 450.00)
2: (0.00, 0.00, 1.00): (200.00, 300.00)



Made total 1471846 arithmetic operations while solving the Serre relations polynomial system.
The total number of arithmetic operations I needed to solve the Serre relations polynomial system was larger than 1 000 000. I am printing out the Serre relations system for you: maybe that can help improve the polynomial system algorithms.
Subalgebra realized.
2*2 (unknown) gens:
(
x_{1} g_{-29}+x_{2} g_{-30}+x_{3} g_{-31}, x_{9} g_{31}+x_{8} g_{30}+x_{7} g_{29},
x_{4} g_{-2}+x_{5} g_{-7}+x_{6} g_{-11}, x_{12} g_{11}+x_{11} g_{7}+x_{10} g_{2})
h: (2, 3, 4, 6, 4, 2), e = combination of g_{29} g_{30} g_{31} , f= combination of g_{-29} g_{-30} g_{-31} h: (1, 1, 1, 0, 1, 1), e = combination of g_{2} g_{7} g_{11} , f= combination of g_{-2} g_{-7} g_{-11} Positive weight subsystem: 2 vectors: (1, 0), (0, 1)
Symmetric Cartan default scale: \begin{pmatrix}
2 & 0\\
0 & 2\\
\end{pmatrix}Character ambient Lie algebra: V_{\omega_{1}+3\omega_{2}}+V_{2\omega_{1}+2\omega_{2}}+V_{3\omega_{1}+\omega_{2}}+2V_{\omega_{1}+2\omega_{2}}+2V_{2\omega_{1}+\omega_{2}}+V_{-\omega_{1}+3\omega_{2}}+3V_{2\omega_{2}}+4V_{\omega_{1}+\omega_{2}}+3V_{2\omega_{1}}+V_{3\omega_{1}-\omega_{2}}+2V_{-\omega_{1}+2\omega_{2}}+4V_{\omega_{2}}+4V_{\omega_{1}}+2V_{2\omega_{1}-\omega_{2}}+V_{-2\omega_{1}+2\omega_{2}}+4V_{-\omega_{1}+\omega_{2}}+6V_{0}+4V_{\omega_{1}-\omega_{2}}+V_{2\omega_{1}-2\omega_{2}}+2V_{-2\omega_{1}+\omega_{2}}+4V_{-\omega_{1}}+4V_{-\omega_{2}}+2V_{\omega_{1}-2\omega_{2}}+V_{-3\omega_{1}+\omega_{2}}+3V_{-2\omega_{1}}+4V_{-\omega_{1}-\omega_{2}}+3V_{-2\omega_{2}}+V_{\omega_{1}-3\omega_{2}}+2V_{-2\omega_{1}-\omega_{2}}+2V_{-\omega_{1}-2\omega_{2}}+V_{-3\omega_{1}-\omega_{2}}+V_{-2\omega_{1}-2\omega_{2}}+V_{-\omega_{1}-3\omega_{2}}
A necessary system to realize the candidate subalgebra.
x_{2} x_{8} +x_{1} x_{7} -2= 0
x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -3= 0
x_{3} x_{9} +x_{2} x_{8} +2x_{1} x_{7} -4= 0
2x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -4= 0
x_{3} x_{9} +x_{2} x_{8} -2= 0
x_{3} x_{12} +x_{1} x_{11} = 0
x_{7} x_{12} +x_{9} x_{11} = 0
x_{1} x_{6} +x_{3} x_{5} = 0
x_{4} x_{10} -1= 0
x_{5} x_{11} -1= 0
x_{6} x_{12} -1= 0
x_{6} x_{9} +x_{5} x_{7} = 0
The above system after transformation.
x_{2} x_{8} +x_{1} x_{7} -2= 0
x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -3= 0
x_{3} x_{9} +x_{2} x_{8} +2x_{1} x_{7} -4= 0
2x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -4= 0
x_{3} x_{9} +x_{2} x_{8} -2= 0
x_{3} x_{12} +x_{1} x_{11} = 0
x_{7} x_{12} +x_{9} x_{11} = 0
x_{1} x_{6} +x_{3} x_{5} = 0
x_{4} x_{10} -1= 0
x_{5} x_{11} -1= 0
x_{6} x_{12} -1= 0
x_{6} x_{9} +x_{5} x_{7} = 0
For the calculator:
(DynkinType =2A^{3}_1; ElementsCartan =((2, 3, 4, 6, 4, 2), (1, 1, 1, 0, 1, 1)); generators =(x_{1} g_{-29}+x_{2} g_{-30}+x_{3} g_{-31}, x_{9} g_{31}+x_{8} g_{30}+x_{7} g_{29}, x_{4} g_{-2}+x_{5} g_{-7}+x_{6} g_{-11}, x_{12} g_{11}+x_{11} g_{7}+x_{10} g_{2}) );
FindOneSolutionSerreLikePolynomialSystem{}( x_{2} x_{8} +x_{1} x_{7} -2, x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -3, x_{3} x_{9} +x_{2} x_{8} +2x_{1} x_{7} -4, 2x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -4, x_{3} x_{9} +x_{2} x_{8} -2, x_{3} x_{12} +x_{1} x_{11} , x_{7} x_{12} +x_{9} x_{11} , x_{1} x_{6} +x_{3} x_{5} , x_{4} x_{10} -1, x_{5} x_{11} -1, x_{6} x_{12} -1, x_{6} x_{9} +x_{5} x_{7} )